
DOI 10.1140/epja/i2003-10004-8

Eur. Phys. J. A 17, 573–578 (2003) THE EUROPEAN
PHYSICAL JOURNAL A

Nuclear many-body dynamics constrained by QCD and chiral
symmetry

P. Finelli1, N. Kaiser2, D. Vretenar3, and W. Weise2,4,a

1 Physics Department, University of Bologna, and INFN-Bologna, I-40126 Bologna, Italy
2 Physik-Department, Technische Universität München, D-85747 Garching, Germany
3 Physics Department, Faculty of Science, University of Zagreb, Croatia
4 ECT∗, I-38050 Villazzano (Trento), Italy

Received: 13 February 2003 / Revised version: 19 February 2003 /
Published online: 25 June 2003 – c© Società Italiana di Fisica / Springer-Verlag 2003
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Abstract. We present a novel description of nuclear many-body systems, both for nuclear matter and finite
nuclei, emphasizing the connection with the condensate structure of the QCD ground state and spontaneous
chiral symmetry breaking. Lorentz scalar and vector mean fields are introduced in accordance with QCD
sum rules. Nuclear binding arises from pionic fluctuations, using in-medium chiral perturbation theory
up to three-loop order. Ground-state properties of 16O and 40Ca are calculated. The built-in QCD con-
straints reduce the number of input parameters significantly in comparison with purely phenomenological
relativistic mean-field approaches.

PACS. 12.38.Bx Perturbative calculations – 21.65.+f Nuclear matter – 21.60.-n Nuclear structure models
and methods – 21.30.Fe Forces in hadronic systems and effective interactions

1 Introduction

The description of nuclear many-body dynamics must ul-
timately be constrained by the underlying theory of the
strong interaction —Quantum Chromodynamics (QCD).
Previous phenomenological steps with this goal in mind
have been taken by Quantum Hadrodynamics (QHD) [1].
In the mean-field (Hartree) approximation, such an ap-
proach is equivalent to a model with local four-point in-
teractions between nucleons [2–4]. Models based on QHD
have been successfully applied to describe a variety of nu-
clear phenomena over the whole periodic table, from light
nuclei to superheavy elements (see ref. [5] for a recent re-
view, and references therein).
While this phenomenological success is impressive, an

understanding of its foundations in QCD is still missing.
The multitude of input parameters in QHD models is usu-
ally not constrained by QCD considerations. Explicit pio-
nic degrees of freedom are absent in most QHD-type cal-
culations, whereas it is obvious that pions, as Goldstone
bosons of spontaneously broken chiral symmetry, must
play an important role in the nuclear many-body problem.
Two-pion exchange effects are supposedly incorporated as
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part of the strong scalar-isoscalar field of QHD models,
but in an ad hoc manner without detailed reference to the
underlying ππNN -dynamics.
A general low-energy effective Lagrangian for nuclear

systems can been written down as a Taylor series in point
couplings involving nucleon currents and their deriva-
tives [6,7]. A large number of coefficients must be deter-
mined in such an effective field theory. The empirical data
set of nuclear bulk and single-particle properties can be
used to fix no more than six or seven of these parameters.
Our approach is similar in spirit but proceeds with a dif-
ferent strategy, imposing as many QCD constraints as pos-
sible in order to minimize the number of free parameters.
The success of relativistic mean-field phenomenology

has been attributed primarily to large Lorentz scalar and
vector nucleon self-energies [7]. There is evidence, in par-
ticular from nuclear matter saturation and from spin-
orbit splittings in finite nuclei, that the magnitudes of
these scalar and vector potentials are of the order of sev-
eral hundred MeV in the nuclear interior. Investigations
based on QCD sum rules [8–10] have shown how such
large scalar and vector nucleon self-energies arise in finite-
density QCD, at least qualitatively, through changes in the
quark condensate and the quark density. Such QCD sum
rule constraints will be one of the basic elements of our
discussion.
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The second important ingredient is chiral pion-nucleon
dynamics. In ref. [11] the equation of state of isospin-
symmetric nuclear matter has been calculated using
in-medium chiral perturbation theory. At nuclear matter
saturation density, the Fermi momentum kf and the
pion mass mπ represent comparable scales, and therefore
pions must be included as explicit degrees of freedom
in the description of nuclear many-body dynamics.
The calculations have been performed to three-loop
order and incorporate the one-pion exchange Fock term,
iterated one-pion exchange and irreducible two-pion
exchange. The resulting nuclear matter equation of state
is expressed as an expansion in powers of the Fermi
momentum kf . The expansion coefficients are functions
of kf/mπ, the dimensionless ratio of the two relevant
scales. The calculation involves one single parameter, the
momentum space cutoff Λ which encodes NN -dynamics
at short distances. With Λ � 0.65 GeV adjusted to the
energy per particle Ē(kf0) = −15.3 MeV, the calculated
equation of state gives the density ρ0 = 0.178 fm−3, the
compression modulus K = 255 MeV, and the asymmetry
energy A(kf0) = 33.8MeV at saturation.
Based on these observations, our “minimal” approach

for nuclear matter and finite nuclei starts from the follow-
ing hypotheses:
A) The nuclear matter ground state is characterized

by large scalar and vector nucleon self-energies of approx-
imately equal magnitude and opposite sign, arising from
the in-medium change of the scalar quark condensate and
the quark density.
B) Nuclear binding and saturation result from chi-

ral (pionic) fluctuations superimposed on the condensate
background fields. These pionic fluctuations are calculated
according to the rules of in-medium chiral perturbation
theory.
As concerns hypothesis A), finite-density QCD sum

rules [8–10] predict the scalar and vector potentials to be
each about 300–400 MeV in magnitude at nuclear matter
saturation density ρ0. The same QCD sum rule analysis,
taken to leading order, also suggests the ratio of scalar to
vector fields to be close to −1. We shall argue that this
is indeed a valid starting point, though not yet capable
of producing nuclear binding. Hypothesis B) asserts that
binding and saturation is ruled primarily by explicit ππ
exchange dynamics based on known properties of πN in-
teractions and calculable using systematic methods of chi-
ral effective field theory —at least as long as the Fermi mo-
mentum kf is small compared to the characteristic scale,
4πfπ ∼ 1 GeV, associated with spontaneous chiral sym-
metry breaking in QCD.
Our aim in this paper is thus to study the inter-

play between condensate background fields and pertur-
bative chiral fluctuations, both rooted in the spontaneous
symmetry-breaking pattern of QCD, in forming nuclei. We
will demonstrate that this scenario works at large, once a
single scale parameter is set to reproduce nuclear mat-
ter at equilibrium. Whereas in first approximation the
condensate potentials do not play a role for the satura-
tion mechanism, we will show that they are essential for

the description of ground states of finite nuclei. We re-
strict ourselves here to gross features of isospin-symmetric
(N = Z) nuclei and relegate further fine tunings as well
as the N > Z case to forthcoming work.

2 Model for nuclear matter and finite nuclei

2.1 Lagrangian

Our approach is defined by the following (isoscalar) La-
grangian, relevant for N = Z nuclei:

L = ψ̄(iγµ∂
µ −M)ψ

+
1
2
GS(ρ) ψ̄ψ ψ̄ψ − 1

2
GV (ρ) ψ̄γµψ ψ̄γ

µψ

+
1
2
DS(ρ) ∂νψ̄ψ ∂

νψ̄ψ − 1
2
DV (ρ) ∂ν ψ̄γµψ ∂

νψ̄γµψ

+
e

2
Aµψ̄(1 + τ3)γµψ − 1

4
FµνF

µν . (1)

Here, ψ is the nucleon spinor field,M is the (free) nucleon
mass and the subscripts S and V refer to the scalar- and
vector-type interactions, respectively. The vector potential
and field strength tensor of the electromagnetic field are
denoted Aµ and Fµν . The coupling parameters of the four-
nucleon contact interactions and the derivative terms are
assumed to be functions of the nucleon density ρ. These
coupling strengths include contributions from condensate
background fields and pionic (chiral) fluctuations, to be
specified. We will formally work at the mean-field level
using eq. (1), with the understanding that fluctuations
beyond mean field are encoded in the density-dependent
coupling strengths.
The single-nucleon Dirac equation derived from the

Lagrangian eq. (1) by variation with respect to ψ̄, reads

[γµ(i∂µ −Σµ −Σµ
R)− (M +Σs +ΣRs)]ψ = 0 , (2)

with the nucleon self-energies defined by the following re-
lations:

Σµ = GV j
µ −DV ✷jµ − eAµ 1 + τ3

2
, (3)

Σs = −GS(ψ̄ψ) +DS✷(ψ̄ψ) , (4)

ΣRs =
∂DS

∂ρ
(∂νj

µ)uµ(∂ν(ψ̄ψ)) , (5)

Σµ
R =

(
−1
2
∂GS

∂ρ
(ψ̄ψ)(ψ̄ψ)− 1

2
∂DS

∂ρ
(∂ν(ψ̄ψ))(∂ν(ψ̄ψ))

+
1
2
∂GV

∂ρ
jνjν +

1
2
∂DV

∂ρ
(∂νjα)(∂νjα)

)
uµ

−∂DV

∂ρ
(∂νjα)uα(∂νjµ) , (6)

where jµ = ψ̄γµψ is the nucleon current, and the velocity
uµ is defined by ρuµ = jµ. In addition to the usual vector
Σµ and scalar Σs self-energies, the density dependence of
the vertex functionsGS(ρ),GV (ρ),DS(ρ) andDV (ρ), pro-
duces the rearrangement contributions ΣRs and Σ

µ
R [12].
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The inclusion of the rearrangement self-energies is essen-
tial for the energy-momentum conservation and the ther-
modynamical consistency of the model [12,13].
The ground state of a nucleus with A nucleons is

the product of the lowest occupied single-nucleon self-
consistent stationary solutions of the Dirac equation (2).
The ground-state energy is the sum of the single-nucleon
energies plus a functional of the scalar density

ρS =
A∑

k=1

ψ̄kψk

and of the nucleon (vector) density

ρ =
A∑

k=1

ψ†
kψk

calculated in the no-sea approximation, i.e. the sum runs
only over occupied positive-energy single-nucleon states
with wave functions ψk.

2.2 Nuclear matter

The energy density E and the pressure P of isospin-
symmetric nuclear matter are calculated from the energy-
momentum tensor Tµν as

E = E0 +
1
2
GSρ

2
S +

1
2
GV ρ

2 , (7)

P = ρ
∂E
∂ρ

− E = µ∗ρ− E0 +
1
2
GV ρ

2 − 1
2
GSρ

2
S

−1
2
∂GS

∂ρ
ρ2

Sρ+
1
2
∂GV

∂ρ
ρ3 . (8)

It should be pointed out that, while these expressions
are formally derived in the mean-field (Hartree) approx-
imation from the Lagrangian (1), they incorporate ex-
change effects and fluctuations beyond mean field. In par-
ticular, the pionic fluctuations to be described in more
detail in sect. 2.4 are calculated at three-loop order which
includes Fock terms from one-pion exchange as well as
all possible exchange terms related to two-pion exchange.
These effects are transcribed into the density dependence
of the couplings GS,V (ρ).
The free quasi-particle contribution is given by

E0 =
4

(2π)3

∫
|k |≤kf

d3k
√
k2 +M∗2 =

1
4
(3µ∗ρ+M∗ρS) ,

(9)
with the effective chemical potential

µ∗ =
√
k2

f +M∗2 , (10)

and the effective nucleon mass

M∗ =M −GSρS . (11)

The baryon density is related to the Fermi momentum
kf in the usual way, ρ = 2k3

f/3π
2, and the expression for

the scalar density reads

ρS =
4

(2π)3

∫
|k|≤kf

d3k
M∗

√
k2 +M∗2 =

M∗

π2

[
kfµ

∗ −M∗2 ln
kf + µ∗

M∗

]
. (12)

Note that, in contrast to the energy density, rearrange-
ment contributions appear explicitly in the expression for
the pressure.
The general form of the vertex functions GS(ρ) and

GV (ρ) is

GS(ρ) = G
(0)
S −∆GS(ρ) , (13)

GV (ρ) = G
(0)
V +∆GV (ρ) , (14)

where G
(0)
S,V are terms governed by the QCD conden-

sates, and ∆GS,V (ρ) refer to the pionic fluctuations, re-
expressed as density-dependent corrections to the mean
fields.

2.3 Constraints from QCD condensates

The in-medium QCD sum rules relate the changes in the
scalar quark condensate and the quark density due to
the finite baryon density with the scalar and vector self-
energies of a nucleon in the nuclear medium. In leading
order, which should be valid below and around nuclear
matter saturation density, one finds for these condensate
parts of the nucleon self-energies [9]:

Σ
(0)
S =−8π

2

Λ2
B

(〈q̄q〉ρ−〈q̄q〉vac)=−8π
2

Λ2
B

σN

mu +md
ρS , (15)

Σ
(0)
V =

64π2

3Λ2
B

〈q†q〉ρ =
32π2

Λ2
B

ρ , (16)

where ΛB ≈ 1 GeV is a characteristic scale, the Borel
mass, entering in the QCD sum rule analysis. For typical
values of the nucleon sigma term σN and the current quark
masses mu and md, the ratio

Σ
(0)
S

Σ
(0)
V

= − σN

4(mu +md)
(17)

is close to −1 (take, for example, σN � 45MeV and
mu +md � 12MeV), with uncertainties at the 20% level.
Using the Hellmann-Feynman theorem in combination
with PCAC (the Gell-Mann-Oakes-Renner relation) to de-
rive the in-medium scalar quark condensate, one finds in
the Fermi gas approximation [8]:

Σ
(0)
S =M∗ −M = −σNM

m2
πf

2
π

ρS , (18)
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which implies

Σ
(0)
S (ρ0) � −350 MeV σN

50 MeV
ρS

ρ0
(19)

or, identifying Σ(0)
S = −G(0)

S ρS :

G
(0)
S � 11 fm2 σN

50 MeV
at ρS � ρ0 = 0.16 fm−3. (20)

Up to this point our discussion is based on the lead-
ing terms of the QCD sum rule, the ones involving the
dimension-four condensates 〈mq q̄q〉 and 〈GµνG

µν〉. The
density dependence of the gluon condensate is in fact
weak and need not be considered. The influence of higher-
dimensional condensates has been discussed in great de-
tail in ref. [9]. Uncertainties arise primarily from contribu-
tions of four-quark condensates. It is common practice to
approximate those four-quark condensates assuming fac-
torization which introduces potentially large and uncon-
trolled errors. We can refrain from this discussion because
our explicit treatment of scalar ππ fluctuations removes at
least part of these uncertainties.

2.4 Pionic (chiral) fluctuations

This brings us next to the constraints from chiral pion-
nucleon dynamics on the density-dependent parts of
eqs. (13), (14). If we follow the assumption, also made im-
plicitly in ref. [11], that in nuclear matter Σ(0)

S � −Σ(0)
V

at ρ = ρ0, the density-dependent couplings of the pionic
fluctuation terms ∆GS(ρ) and ∆GV (ρ) are determined
by equating the corresponding self-energies in the single-
nucleon Dirac equation (2) with those calculated using in-
medium chiral perturbation theory (CHPT) in ref. [11]:

∆GS(ρ)ρS = ΣCHPT
S (kf , ρ) , (21)

∆GV (ρ)ρ+
1
2
∂∆GS

∂ρ
ρ2

S +
1
2
∂∆GV

∂ρ
ρ2 = ΣCHPT

V (kf , ρ) .

(22)
We have indicated here that the ΣCHPT

S,V (p, ρ) depend ex-
plicitly on the nucleon momentum p.
The energy per particle Ē(kf ) in nuclear matter

gives, via the Hugenholtz-van Hove theorem, the sum of
the scalar and vector nucleon self-energies U(kf , kf ) =
ΣCHPT

S (kf , ρ)+ΣCHPT
V (kf , ρ) at the Fermi surface p = kf

up to two-loop order, as generated by chiral one- and
two-pion exchange [14]. The difference ΣCHPT

S (kf , ρ) −
ΣCHPT

V (kf , ρ) is calculated from the same pion-exchange
diagrams via the anti-nucleon single-particle potential in
nuclear matter. Following a procedure similar to the de-
termination of the nucleon-meson vertices of relativistic
mean-field models from Dirac-Brueckner calculations [15],
we neglect the momentum dependence of ΣCHPT

S,V (p, ρ)
and take their values at the Fermi surface p = kf . A
polynomial fit up to order k5

f is performed, and the self-
energies are then re-expressed in terms of baryon density
ρ = 2k3

f/3π
2:

ΣCHPT
S (kf , ρ) = (cS0 + cS1 ρ

1/3 + cS2 ρ
2/3) ρ , (23)

ΣCHPT
V (kf , ρ) = (cV 0 + cV 1 ρ

1/3 + cV 2 ρ
2/3) ρ . (24)

0.0 0.1 0.2 0.3 0.4 0.5

ρ (fm-3 )

-20.0

-10.0

0.0

10.0

20.0

30.0

E
/A

 (
M

eV
)

KFW-2002
PC-dd

Fig. 1. Binding energy per nucleon for symmetric nuclear mat-
ter as a function of the baryon density. The solid curve (KFW-
2002) is the EOS calculated in ref. [11] by using in-medium
CHPT. The EOS displayed by the dotted curve (PC-dd) is
obtained when the resulting CHPT nucleon potentials are
mapped on the self-energies of the relativistic point-coupling
model with density-dependent couplings.

The values of the coefficients are: cS0 = −2.805 fm2,
cS1 = 2.738 fm3, cS2 = 1.346 fm4, cV 0 = −2.718 fm2,
cV 1 = 2.841 fm3, and cV 2 = 1.325 fm4. The resulting ex-
pressions for the density-dependent couplings of the pionic
fluctuation terms are

∆GS(ρ) = cS0 + cS1 ρ
1/3 + cS2 ρ

2/3 , (25)

∆GV (ρ)=cV 0 +
1
7
(6cV 1− cS1) ρ1/3 +

1
4
(3cV 2− cS2) ρ2/3 .

(26)
In deriving the expressions for ∆GS(ρ) and ∆GV (ρ) we
have set ρS ≈ ρ on the left-hand sides of eqs. (21) and
(22). Although the relation between the scalar and baryon
density depends on the Fermi momentum, this approxi-
mation is justified for ρ ≤ ρ0. With the density-dependent
couplings (25) and (26), eqs. (7) to (12) produce a nu-
clear matter equation of state which is very close to the
one calculated successfully in CHPT. This is shown in
fig. 1, where we compare the nuclear matter equation
of state calculated from eqs. (7) and (8), with the one
obtained using in-medium CHPT [11]. Corresponding
ground-state properties, i.e. the binding energy per par-
ticle, the saturation density, the compressibility modulus,
and the asymmetry energy at saturation, are compared in
table 1. Small differences arise mainly because the momen-
tum dependence of the CHPT self-energies has been frozen
in eqs. (23), (24). This is a well-known problem which has
been extensively discussed, for instance, in ref. [15]. By
fine tuning just two of the parameters in eqs. (25) and
(26) we could, of course, reproduce the CHPT equation of
state of ref. [11] exactly. In the present work, however, we
prefer not to perform any such tuning of parameters.
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Table 1. Nuclear matter saturation properties: binding en-
ergy per nucleon, saturation density, incompressibility, and the
asymmetry energy at saturation. The first row corresponds to
the in-medium CHPT calculation including one- and two-pion
exchange [11]. The EOS displayed in the second row is ob-
tained when the resulting CHPT single-nucleon potentials are
mapped on the self-energies of the relativistic point-coupling
model with density-dependent couplings.

Model E/A ρ0 K A
(MeV) (fm−3) (MeV) (MeV)

CHPT [11] −15.26 0.178 255 33.8
PC-dd −14.51 0.175 235 36.6

2.5 Finite nuclei

Having constrained G
(0)
S,V from QCD condensates, and

having adjusted one short-distance scale parameter ap-
pearing in the pionic fluctuation couplings ∆GS(ρ) and
∆GV (ρ) to the equation of state of isospin-symmetric nu-
clear matter, we proceed to calculate finite nuclei. In this
work we only consider the isoscalar channel and calcu-
late the ground states of 16O and 40Ca. In addition to
GS(ρ) and GV (ρ), two new quantities appear specifically
for finite nuclei, namely the couplings of the terms involv-
ing derivatives in the nucleon fields in eq. (1): DS(ρ) and
DV (ρ). Guided by dimensional considerations, we intro-
duce the ansatz

DS(ρ) =
GS(ρ)
Λ2

and DV (ρ) =
GV (ρ)
Λ2

, (27)

where Λ is again a characteristic mass scale delineating
short- and long-distance phenomena. In the present cal-
culation we simply choose Λ ≈ 0.65 GeV, the same value
that has been used for the momentum space cutoff in the
in-medium CHPT calculation of the nuclear matter equa-
tion of state. In this way, and we emphasize this point,
no new parameters are needed in the calculation of finite
nuclei.
In the first step we have calculated the ground

states of 16O and 40Ca with GS(ρ) = ∆GS(ρ) and
GV (ρ) = ∆GV (ρ), i.e. we have set the couplings to
the condensate background fields to zero. The nuclear
dynamics is then completely determined by chiral (pionic)
fluctuations. The interesting result is that the calculated
total binding energies are within 5–8% of the experimen-
tal values, but the resulting radii of the two nuclei are too
small (by about 0.2 fm). This is because the spin-orbit
partners (1p3/2, 1p1/2) and (1d5/2, 1d3/2) are practically
degenerate: chiral two-pion exchange dynamics alone,
although it can provide the attraction necessary to bind
nuclei, does not produce the proper spin-orbit interaction.
This is shown in fig. 2, where we display the neutron and
proton single-particle levels in 16O and 40Ca, calculated
in the limit G(0)

S,V = 0.
The spin-orbit degeneracy is removed by including

the self-energies which arise from the changes in the
scalar quark condensate and quark density. In the second
step we have adjusted the couplings G(0)

S and G(0)
V to the
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Fig. 2. Neutron and proton single-particle levels in 16O and
40Ca calculated in the relativistic point-coupling model. The
calculation is performed using only the contribution from chiral
one- and two-pion exchange to the density dependence of the

coupling parameters (i.e. G
(0)
S,V = 0 in eqs. (13), (14)).

Table 2. Binding energies per nucleon E/A (MeV) and root-
mean-square charge radii rc (fm) of 16O and 40Ca. The ex-
perimental values, shown in the second and third column, are
compared with the results of the present calculation.

Eexp/A rexp
c E/A rc

16O 7.98 2.74 8.60 2.80
40Ca 8.55 3.48 8.10 3.64

binding energies and the charge radii of 16O and 40Ca. We
emphasize again that, up to this point, our calculation of
both the nuclear matter equation of state and the binding
energies of finite nuclei includes only one adjustable
parameter: Λ = 0.647 GeV. Even though G

(0)
S and G

(0)
V

were varied independently, the minimization procedure
tends to favour the cancellation of the contributions from
the corresponding large scalar and vector self-energies.
This happens because there is already enough binding
from pionic fluctuations, and therefore Σ

(0)
S = −Σ(0)

V
represents a very good approximation for the conden-
sate potentials. The final values G(0)

S = 10.52 fm2 and
G

(0)
V = 10.00 fm2 should be compared with the estimate

eq. (20), and with the leading-order coefficients of the
pionic (CHPT) terms cS0 and cV 0. This is a remarkable
result which indeed supports the “minimal scenario” with
condensate background fields plus pionic fluctuations as
a very reasonable starting point.
In table 2 we compare the calculated binding energies

and charge radii with the corresponding empirical values.
The absolute deviations between theory and experiment
are 7.8% and 5.3% for the binding energies, and 2.5% and
4.6% for the charge radii of 16O and 40Ca, respectively. In
fig. 3 the neutron and proton single-particle levels in 16O,
calculated with the inclusion of the condensate potentials,
are compared with the experimental levels. We notice that
this calculation reproduces about 2/3 of the empirical
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Fig. 3. The neutron and proton single-particle levels in 16O
calculated in the relativistic point-coupling model, are shown
in comparison with experimental levels. The calculation is per-
formed by including both the contributions of chiral pion-
nucleon exchange, and of the isoscalar condensate self-energies,
to the density dependence of the coupling parameters.

spin-orbit splitting. While this result is clearly not yet
satisfactory at a quantitative level, it also indicates the
necessary steps for further improvements. The approach
is so far not fully self-consistent, in the following sense. By
construction, the condensate potentials do not contribute
to the binding of nuclear matter which is accounted for al-
most entirely by chiral two-pion exchange dynamics. This
leaves no room for increasing the scalar (S) and vector (V )
condensate background contributions such that, by their
difference S − V , the large spin-orbit splitting can be re-
produced quantitatively. The obvious solution is to treat
the chiral (two-pion exchange) fluctuations and the con-
densate self-energies on the same level, both for nuclear
matter and for finite nuclei. Furthermore, it is necessary to
go beyond the leading order in the QCD sum rules and ex-
amine higher-order density dependence for the condensate
self-energies. These points will be considered in a forth-
coming analysis of a generalized point-coupling model con-
strained by QCD sum rules and in-medium CHPT.
We note in passing that our model for finite nuclei

could, in principle, be based on an alternative chiral
approach to isospin-symmetric nuclear matter proposed
by Lutz et al. [16]. In addition to pion-exchange, their
approach includes contributions from a zero-range NN -
contact interaction treated beyond the mean-field approx-
imation (i.e. the contact interaction is also iterated with
1π exchange). However, while the nuclear matter equation
of state of ref. [16] is comparable to the one used in the
present work, the single-nucleon potential resulting from
that approach has several unrealistic features [17]. For in-
stance, the single-nucleon potential at zero momentum
U(0, kf0) ≈ −23 MeV is not sufficiently attractive, and
the total single-nucleon energy does not increase mono-
tonically with momentum (implying a negative effective
mass). The corresponding scalar and vector self-energies
resulting from this particular scheme therefore would not
be suitable for applications to finite nuclei.

3 Conclusion

The effective Lagrangian (1), with couplings governed by
scales of low-energy QCD, gives a good description of
both symmetric nuclear matter and finite N = Z nu-
clei at a level better than 10%, even without detailed fine
tuning of parameters. While nuclear binding and satura-
tion are almost completely generated by chiral (two-pion
exchange) fluctuations, strong scalar and vector fields of
equal magnitude and opposite sign, induced by changes
of the QCD vacuum in the presence of baryonic matter,
drive the large spin-orbit splitting in finite nuclei. Con-
sidering the constraints from QCD condensates and chiral
dynamics that keep the number of adjustable parameters
at minimum, our results are quite encouraging. Investi-
gations are now being generalized to include corrections
from higher-dimensional QCD condensates. The calcula-
tions are also expanded to cover a wider range of finite
nuclei with extensions towards N > Z systems.

This work has been supported in part by BMBF, GSI, DFG
and INFN.
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